New Test and Fault Tolerance Techniques for Reliability Characterization of Parallel and Reconfigurable Processors

PhD Final Exam presentation

PhD Candidate: Davide Sabena

Advisor: Prof. Luca Sterpone

Motivations and Goals

- Parallel and reconfigurable systems are more and more used in a wide number of applications and environments, ranging from mobile devices to safety-critical products
 - reliability needs increase continuously
- New test and fault tolerance techniques are proposed
 - addressing the most common parallel and reconfigurable computational units...
 - ...today used in mission-critical and safety-critical devices.

Outline

- Very Long Instruction Word (VLIW) Processors
 - test algorithms and diagnosis methods
- General Purpose Graphic Processing Units (GPGPUs)
 - reliability evaluation of memories and of different device configurations
- Company collaboration: General Motors Powertrain Europe
 - project overview
 - developed tasks
- Conclusions and future works.

VLIW introduction

- Static scheduling of the operations
 - compile time detection of the Instruction Level Parallelism

- + lower power consumption
- + smaller size and complexity of the processor
- higher complexity of the compiler and of the assembly code.

VLIW applications

- used in systems demanding data intensive computations and low power consumption
 - e.g., AMD GPGPU Stream Cores (Radeon HD 5000 series)
- used even for mission-critical applications (space)

- Tilera TILE 64 processor (64 VLIW cores)
 - image analysis onboard a Mars rover for NASA space missions.

VLIW: test methods

- Testing processor module with respect to permanent faults is an issue
- Functional test approaches (SBST) are used
- A new method aimed at the automatic generation of optimized SBST programs for VLIW processors has been developed
 - high fault coverage on all the Functional Units of a generic VLIW processor...
 - ...reducing the test time and the test program size.

VLIW: test methods

- testing processor module with respect to permanent faults is an issue
- functional test approaches (SBST) are used
- a new method aimed at the automatic generation of ontimized SRST programs for VLIW processors has be
 - This work has been developed partially in the 1st year and partially in the 2nd year of PhD
 - Published in a <u>journal paper</u>: *IEEE Transactions on Very Large Scale Integration (VLSI)*, April 2013.

VLIW: diagnosis method

- When VLIW processors dependability is a concern, dynamic reconfiguration is used
 - permanent fault detection
 - fault location
 - repair
- A new method for the generation of Diagnostic Test Programs for VLIW processors has been developed
 - exploiting the SBST methods developed in the previous years of PhD
 - able to identify the faulty module
 - on a selected case study (e.g., ρ-VEX processor from Delft University of Technology) the faulty module is identified in about 87% of the cases.

VLIW: diagnosis method

- When VLIW processors dependability is a concern, dynamic reconfiguration is used
 - permanent fault detection
 - fault location
 - repair

Published in:

- conference paper (IFIP/IEEE VLSI-SoC 2013)
- Springer Book Chapter, 2013.

GPGPUs Introduction

- GPGPUs are increasingly adopted and preferred to CPUs in:
 - several computationally intensive applications (not necessarily related to computer graphics)
 - safety-critical applications, i.e., automotive (Advanced Driver Assistance Systems - ADAS), biomedical, avionics, etc...
 - High Performance Computing (HPC)
- The GPGPUs reliability is currently a hot research topic

NVIDIA Fermi architecture: one of the most frequently

adopted architectures.

- Main goal: evaluation of soft-error effects in GPGPU applications
- Three Neutron-based tests campaigns
 - ISIS facility (Didcot, UK), May and December 2013
 - LANSCE facility (Los Alamos, USA), August 2013

NVIDIA Quadro 1000m.

ISIS test facility →

GPGPU under test

- Main goal: evaluation of soft-error effects in GPGPU applications
- Three Neutron-based tests campaigns
 - ISIS facility (Didcot, UK), May and December 2013
 - LANSCE facility (Los Alamos, USA), August 2013

Collaboration with Professors Paolo Rech and Luigi Carro from *Universidade Federal do Rio Grande do Sul (UFRGS)*, Porto Alegre, Brazil.

- evaluation of the radiation sensitiveness of the L1 and L2 caches
 - measurement of the Failure In Time (FIT)
- 2. evaluation of traditional soft-error detection techniques applied to GPGPUs code
 - time redundancy
 - Detected errors: 87.5% / Overhead 97.5%
 - thread redundancy
 - Detected errors: 75.1% / Overhead: 4.11%

- evaluation of the radiation sensitiveness of the L1 and L2 caches
 - measurement of the Failure In Time (FIT)
- 2. evaluation of traditional soft-error detection techniques applied to GPGPUs code

Published Papers:

- Evaluating the radiation sensitivity of GPGPU caches: New algorithms and experimental results, Microelectronics Reliability, 2014
- On the evaluation of soft-errors detection techniques for GPGPUs, *IEEE International Design and Test Symposium (IDT)*, December 2013.

3. FFT algorithm

- based on the Cooley—Tukey algorithm
- Three different GPGPU configurations:
 - FFT_64: 2 Thread Blocks with 64 Threads in each block
 - FFT_32: 2 Thread Blocks with 32 Threads in each block
 - FFT_64_NOL1: 2 Thread Blocks with 64 Threads in each block, cache L1 disabled.

- The most reliable configuration has been obtained by disabling the L1 caches
 - limited performance degradation, in the case of FFT algorithm.

3. FFT algorithm

- based on the Cooley—Tukey algorithm
- Three different GPGPU configurations:
 - FFT_64: 2 Thread Blocks with 64 Threads in each block
 - FFT_32: 2 Thread Blocks with 32 Threads in each block
 - FFT 64 NOL1: 2 Thread Blocks with 64 Threads in each bloce

Published Paper:

 Reliability Evaluation of Embedded GPGPUs for Safety Critical Applications, IEEE Transactions on Nuclear Science, December 2014.

degradation, in the case of FFT algorithm.

GM activity: project overview

- Project GOAL: performance and reliability evaluation of a new Timer Module (i.e., the Generic Timer Module) used in automotive domain
- Utilization Context:

GM activity: 3 performed tasks

- 1. Timer Module programming
 - 7 functions (required by GM) managing the engine fuel injection
 - SPC574k Freescale / ST evaluation board
- 2. Development of an FPGA-based validation platform

- Xilinx Virtex 5
- Microblaze processor

- 3. Experiment campaigns:
 - detailed analysis with different engine behavior.

Conclusions and Future Works

3 activities

- 2 research activities (VLIWs and GPGPUs reliability)
- 1 company collaboration (GM Powertrain)

16 published papers

- 3 journal papers
- 1 Springer book chapter
- 12 international peer-reviewed conference papers

• Future Works:

- VLIW: development of a partial reconfiguration environment
- GPGPU: same techniques to different GPGPU models (e.g., AMD)
- GM activity: possible extension of the current contract, to further investigate the GTM capabilities.

Thank you

Any questions?

